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ABSTRACT: The highly efficient and selective transforma-
tions of glycerol to valuable compounds using reusable
heterogeneous catalysts are demonstrated. Lanthanum cation-
exchanged montmorillonite shows high activity for the selective
synthesis of diacetylglycerols through acetylation with acetic
acid. Furthermore, the diacetylglycerols obtained can be
subsequently oxidized into 1,3-diacetoxyacetone under air using an AlOx-embedded copper nanoparticle catalyst.
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■ INTRODUCTION

Glycerol is an unavoidable coproduct of the biodiesel
production process, and so recent increases in the adoption
of biodiesel have led to a concurrent rise in glycerol stocks.1,2 It
would therefore be desirable to develop methods of trans-
forming glycerol into value-added chemicals in order to
increase the profitability of biodiesel manufacture. Among the
various transformations of glycerol which have been
proposed,3−11 the conversion of glycerol into highly valuable
acetylglycerols is promising,12−16 and the synthesis of
diacetylglycerols (DAGs) has received much attention because
these compounds are widely applied in the pharmaceutical,
cosmetics, polymer, food additives, and tobacco industries, in
addition to their role as biodiesel additives.17,18 To date, many
acid catalyst systems have been developed for the production of
DAGs.5,19−23 However, the selectivity for DAGs is still low, and
harsh reaction conditions are required. Therefore, there is a
demand for the development of highly efficient catalytic
systems for the production of DAGs from glycerol that can
be applied to industrial-scale processes.24−32

Montmorillonite (mont) is a layered clay mineral consisting
of silica−alumina sheets with exchangeable Na ions located in
the interlayers. Various metal cations can be introduced to the
interlayer using ion-exchange techniques, and the expandable
nature of the mont interlayers enables reactant molecules to
easily access such active metal species.33 Our previous work has
focused on the insertion of various types of active metal species
within the mont interlayers, resulting in efficient and unique
catalysis, including metal ions,34−36 metal oxides,37−39 and
metal clusters,40,41 for the purpose of effective organic
transformations.
Herein, we demonstrated the highly efficient and selective

transformations of glycerol to valuable compounds using

heterogeneous catalysts based on the mont system (Scheme
1). Specifically, lanthanum cation-exchanged mont (La3+-mont)
is shown to act as a highly efficient and reusable heterogeneous
catalyst for the selective synthesis of diacetylglycerols through
acetylation with acetic acid. Furthermore, the diacetylglycerols
obtained from this process can be subsequently oxidized into
1,3-diacetoxyacetone with over 99% selectivity using air as an
environmentally friendly oxidant through the use of an AlOx-
embedded copper nanoparticle catalyst (CuNP@AlOx). These
two catalyst systems can also be combined to allow the one-pot
synthesis of 1,3-diacetoxyacetone from glycerol, in which each
catalyst functions independently without mutual deactivation.
Moreover, the CuNP@AlOx catalyst has also demonstrated the
complete monomerization of diacetylglycerol isomers to 1,3-
diacetylglycerol via successive oxidation−hydrogenation reac-
tions. Both of these solid catalysts can be separated from the
reaction mixture simply by filtration and reused with no
significant loss of their initial catalytic activities. The catalyst
systems offer the significant advantages of high activity and
selectivity, facile preparation, and easy recovery and recycling
with excellent reusability. These characteristics are important in
the industrial synthesis of value-added glycerol derivatives.

■ EXPERIMENTAL SECTION
Various metal cation-exchanged monts were prepared according to our
previously reported procedure through the treatment of Na+-mont
(Kunipia F, Kunimine Industry Co. Ltd.; Na, 2.73; Al, 10.3; Fe, 1.35;
Mg, 1.97%) with aqueous solutions of various metal triflates.34−36

La3+-mont was obtained as a gray powder from this process, and X-ray
diffraction studies showed an increase in the interlayer spacing from
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2.1 to 5.3 Å resulting from the cation exchange. This expanded
distance demonstrates that La3+ cations were introduced into the mont
interlayers by a simple ion-exchange reaction. From elemental analysis
data, the La and Na atom loadings were found to be 0.62 and 0.01 wt
%, respectively, which indicates that one La3+ ion has been substituted
for each three equivalents of Na+ ions. Fourier transform of the k3-
weighted La K-edge extended X-ray absorption fine structure
(EXAFS) exhibited a peak at 2.0 Å assigned to the La−O moiety,
while no peaks due to the La−(O)−La bond were observed. A curve-
fitting analysis showed that the interatomic distance and the
coordination number were 2.55 Å and 11, respectively, indicating
the La3+ species is present within the mont interlayers as a monomeric
aqua cation.42 The CuNP@AlOx employed in this work was
synthesized according to our recent reported method.43 Details of
the reaction procedures are described in the Supporting Information.

■ RESULTS AND DISCUSSION
The diacetylation of glycerol with two molar equivalent of
acetic acid was carried out using a variety of metal cation-
exchanged monts in toluene solvent at 120 °C. Among the
monts tested, La3+-mont exhibited the highest catalytic activity,
producing 1,3- and 1,2-diacetylglycerol in 98% combined yield
with >99% selectivity (Table 1, entry 1). This very high

selectivity is unique among the metal cation-exchanged monts
tested. The use of other rare earth metals and transition metals
within the mont layers, including Ce, Sc, Ti, and Fe, resulted in
high conversion values of the glycerol but lower selectivities for
the diacetylglycerols (Table 1, entries 3−6). Interestingly, the
use of either La(OTf)3 or Na

+-mont, which are the precursors
of La3+-mont, resulted in extremely low yields of diacetylglycer-
ols (entries 7 and 8), demonstrating that the insertion of La3+

cations into the mont interlayers dramatically changes the
catalytic performance of the La3+. The catalytic activity and
selectivity of La3+-mont for diacetylglycerol in the diacetylation
of glycerol are significantly greater than those of previously
reported catalysts such as Niobia/TPA (conv. of glycerol =
97%, sel. for diacetylglycerols = 57%),44 TPA/Csx−ZrO2 (90%
and 54%),45 K-montmorillonite (96% and 9%),46 HZSM-5
(30% and 10%),13 MoOx/TiO2−ZrO2 (100% and 40%),47

phosphotungstic acid/activated carbon (86% and 63%),21 and
Amberlyst 15 (83% and 60%).48

After the completion of the reaction, the La3+-mont catalyst
was easily recovered from the reaction mixture by filtration.
Furthermore, the used La3+-mont catalyst exhibited excellent

Scheme 1. Transformations of Glycerol to Valuable Compounds Using La3+-mont and CuNP@AlOx Catalysts

Table 1. Diacetylation of Glycerol with Acetic Acid over Various Metal-Exchanged Mont Catalystsa

selectivity for acetylglycerol (%)b

entry catalyst conv. (%) mono-c di-d tri-

1 La3+-mont 98 0 >99 (2.5) 0
2e La3+-mont 98 0 >99 (2.5) 0
3 Ce4+-mont 98 37 (5.8) 44 (2.5) 19
4 Sc3+-mont 97 37 (6) 43 (2.5) 20
5 Ti4+-mont 85 0 61 (2.5) 39
6 Fe3+-mont 85 0 64 (2.5) 36
7 La(OTf)3 2 trace 1 0
8 Na+-mont 2 trace 1 0

aReaction conditions: glycerol (1 mmol), AcOH (2 mmol), catalyst (metal; 0.02 mmol), toluene (3 mL), 120 °C, and 24 h. bCalculated from the
isolated yields. cRatio of 1-/2-acetylglycerol by 1H NMR analysis are in parentheses. dRatio of 1,3-/1,2-diacetylglycerol by 1H NMR analysis are in
parentheses. eFifth reuse experiment.
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reusability with consistently high activity and selectivity even
after five consecutive cycles (entry 2). No quantifiable amount
of leached La was detected in the filtrate by inductively coupled
plasma−atomic emission spectroscopy (ICP-AES) analysis,
which is consistent with the high reusability of La3+-mont.
EXAFS analysis was performed to elucidate the atomic

structure of the used La3+-mont. Notably, La K-edge EXAFS
data showed only a single peak at 2.0 Å, assignable to the La−O
group, with an interatomic distance and coordination number
similar to those of fresh La3+-mont. These results clearly
indicate that the monomeric aqua La3+ cation species was
maintained during the acetylation reaction. This phenomenon
is very different from the reported behavior of the aqua
complex [La(H2O)x]

3+, which readily undergoes hydrolysis to
yield OH-bridged dimers and trimers.49 The present La3+-mont
catalyst possesses highly stable monomeric La aqua species due
to the fact that the cations are strongly held within the mont
layers, which provides for both high activity and exceptional
durability. La3+-mont also offers the unique advantage of
interlayer expandability; the interlayer spacing within the La3+-
mont expands from 5.3 to 7.4 Å when soaked in a toluene
solvent, which allows substrates ready access to the active La
ions. The superior catalytic activity of La3+-mont for DAG as
compared to other metal catalysts might be attributed to the
high coordination number of the La cation. The La cation
within the mont layers is capable of dual activation of both the
glycerol and the acetic acid reactants through multiple
coordination. Moreover, La3+-mont was applicable to the
selective synthesis of mono- and triacetylglycerol from glycerol
by controlling the amount of acetic acid used. The use of 1 and
3 molar ratios of acetic acid to glycerol provided mono and
triacetylglycerol in 97% and >99% yields, respectively.
We next investigated further functionalization of glycerol by

the selective oxidation of the remaining hydroxyl group in
DAGs to afford diacetoxyacetone. The compound 1,3-
diacetoxyacetone can serve as a feedstock for the synthesis of
various chemicals and also is a pharmaceutically important
precursor for the synthesis of antifungals.50−53 In an initial
screening process, various supported metal nanoparticles
known to have catalytic potential for the aerobic oxidation of
alcohols were examined.54−58 The oxidations were carried out
at 180 °C for 5 h, using air as a green oxidant, by addition of
the metal nanoparticle catalysts to the reaction filtrate following
the acetylation. Notably, base metal Cu nanoparticles
embedded in an AlOx matrix (CuNP@AlOx) were found to
be the best catalyst among those tested,43 allowing the
complete conversion of DAGs to 1,3-diacetoxyacetone with
excellent yield under aerobic conditions (Table 2, entry 1).
Other supported Cu nanoparticles also served as selective
catalysts for the aerobic oxidation of DAGs to 1,3-diacetyl
acetone, but the observed efficiencies were lower than that of
CuNP@AlOx (entries 3−6).

59 Interestingly, the leaching of Cu
species out of CuNP@AlOx was not observed by ICP-AES
analysis, while visible leaching was seen with other supported
Cu nanoparticle materials, such as Cu/FAP, and Cu/HAP. In
addition, recovered CuNP@AlOx was reusable without any loss
of activity or selectivity (Table 2, entry 2). The oxidation of 1,2-
DAG proceeds through its isomerization to the more stable 1,3-
DAG followed by the oxidation of 1,3-DAG to 1,3-
diacetoxyacetone.60,61 The high efficiency of Cu nanoparticles
in this reaction compared to other metal nanoparticles is due to
their preferential oxidation ability for secondary hydroxyl
groups over primary hydroxyl groups.62

We further attempted the combination of these two
heterogeneous catalyst systems in a one-pot synthetic process.
The one-pot transformation of glycerol to 1,3-diacetoxyacetone
through the acetylation of glycerol followed by the aerobic
oxidation of acetylglycerols was investigated, employing both
La3+-mont and CuNP@AlOx under scale-up reaction con-
ditions (Scheme 2). Interestingly, La3+-mont and CuNP@AlOx

were found to work independently without any mutual
deactivation, and 1,3-diacetoxyacetone was obtained in
excellent yield as the sole product.
Furthermore, CuNP@AlOx was shown to act as a bifunc-

tional catalyst in the reversible transformation between 1,3-
DAG and 1,3-diacetoxyacetone via a combination of oxidation
and hydrogenation.63 Using this method, 1,3-diacetoxyacetone
was successfully converted into 1,3-DAG in 98% yield as the
sole product by reaction under a H2 pressure (Scheme 3).

Therefore, the use of CuNP@AlOx enabled the complete
monomerization of the initial mixture of 1,2- and 1,3-DAGs
resulting from the acetylation of glycerol to 1,3-diacetylglycerol
with 99% selectivity through successive oxidation−hydro-
genation reactions. To the best of our knowledge, this is the
first example of the selective synthesis of 1,3-diacetylglycerol
from glycerol. These transformation reactions show great

Table 2. Oxidation of Diacetylglycerols Using Various Metal
Nanoparticle Catalystsa

entry catalyst conv. (%)b yield (%)c

1 CuNP@AlOx 100 99
2d CuNP@AlOx 100 98
3 Cu/Al2O3 70 65
4 Cu/SiO2 65 63
5 Cu/FAP 45 40
6 Cu/HAP 30 25
7 Cu2O 12 8
8 Cu(NO3)2 0 0

aReaction conditions: mixture of 1,2- and 1,3-diacetylglycerol (1.0
mmol), catalyst (Cu: 0.38 mmol), toluene 3 mL, 180 °C, and 5 h.
bDetermined by GC using internal standard. cIsolated yields. dThird
reuse experiment.

Scheme 2. One-Pot Selective Synthesis of 1,3-
Diacetoxyacetone from Glycerol under Scale-Up Reaction
Conditions

Scheme 3. Selective Hydrogenation of 1,3-Diacetoxyacetone
to 1,3-Diacetylglycerol Using CuNP@AlOx
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promise with regard to allowing efficient utilization of the
enormous quantities of glycerol currently produced in biodiesel
synthesis, leading to significant improvements in the economic
viability of biodiesel production.

■ CONCLUSION
In conclusion, we have demonstrated the highly efficient and
selective transformations of glycerol to oxygenated derivatives
using heterogeneous catalysts. La3+-mont and CuNP@AlOx
showed high activity for the acetylation of glycerol and the
aerobic oxidation of diacetylglycerols to 1,3-diacetoxyacetone,
respectively. The use of these two heterogeneous catalysts in a
one-pot reaction process was also applicable to the direct and
selective synthesis of 1,3-diacetoxyacetone from glycerol.
Moreover, CuNP@AlOx demonstrated the complete mono-
merization of diacetylglycerol isomers to 1,3-diacetylglycerol
through oxidation−hydrogenation reactions.
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